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Abstract Three aspects of texture are distinguished by frac-
tal geometry: Fractal Dimension (FD), Lacunarity and Suc-
colarity. Although, FD has been well studied and Lacunar-
ity has been more and more used, Succolarity, until now,
has not been considered. This work presents a method to
compute Succolarity. The proposed approach, for this com-
putation, is based on the evaluation of a proposed equation
that employ the FD Box Counting idea adapted to the con-
cept of Succolarity. Simple examples, on 2D and 3D images,
are considered to easily explain, step by step, how to com-
pute the Succolarity. To illustrate this approach examples are
shown, they range form satellite to ultrasound images. The
proposed form of Succolarity evaluation is a unique feature
usable whether it is relevant differentiate images with some
directional or flow information associated with it. Therefore
it could be used as a new feature in pattern recognition pro-
cesses for the identification of natural textures. Furthermore,
it works very well when is relevant differentiate images with
some characteristics (e.g. directional information) that can
not be discriminate by FD or Lacunarity.
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1 Introduction

The here proposed approach to calculate Succolarity is a
natural evolution of the others well known fractal measures
evaluators: FD and Lacunarity. These two measures already
have good and effective computation methods. Our goal is
propose a simple method that attend to the notions of Succo-
larity [1] and preserve similar characteristics of the already
known measures.

These three FD measures are complementary: That is,
two sets could have the same FD and be distinguished by La-
cunarity [2]. On the same way, the idea of Succolarity makes
possible distinguish different sets or textures that have the
same FD and Lacunarity [3] or vice-versa. The Fractal Di-
mension indicates how much an object occupies its under-
lying metric space. An intuitive definition of Lacunarity is
that it measure the gap (or lacuna from Latin) distribution
[4]. A fractal is more lacunar if its gaps tend to be large, in
the sense that they include large intervals (discs, or balls).
The Succolarity [1] indicates the capacity of a flow to cross
the set. A Succolarity on fractal sets is defined as evalua-
tion of the degree of filaments that allow percolation or to
flow through. Methods to calculate FD were implemented
in a great number of applications [5-10]. There are also a
number of works on Lacunarity computation [3, 4, 11, 12].
The algorithm here proposed was based on the box counting
method [6] adapted to the notions of Succolarity [13]. Pres-
sure of a virtual fluid was considered to evaluate the relation
among direction and percolation, on the result. The input of
the approach, here explained, must be binary images.

A completely novel expression to compute Succolarity
is presented here, as well as a totally new computation ap-
proach. The only definition for this measure that we use is a
descriptive one presented by Mandelbrot. Therefore, a for-
mal definition and an original approach are both proposed.
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Fig. 1 Comparison of Fractal Dimension of Sierpinski’s carpet
with different resolutions: 243 x 243, 81 x 81 and 27 x 27 pixels.
FD = log(8)/1log(3) &~ 1.89. Fractal Dimension does not change with
scale

243x243 81x81 27x27

The method is based on the box counting approach [5] but
with adaptations to attend the notions of Succolarity [13].
This text could then be a basic tutorial for people who would
like to use this. Simple examples are used to explain, by
stages, how to compute the Succolarity for binary images
and for 3D objects.

To illustrate, the approach is used to characterize satel-
lite images of cities through its social aspects [11, 12, 19],
and to evaluate blood circulation in biomedical images [2].
Another type of application that demonstrate to be interest-
ing to future investigations is the analysis of the texture ap-
pearance of pre-sliced pork ham images to characterize its
qualities [20].

2 Why another fractal measure, like Succolarity could
be useful?

The main idea of this section, is to explain, through exam-
ples, the necessity of using, not just one, but a combination
of fractal measures, to help the identification of texture pat-
terns on images. The three fractal characteristics (fractal di-
mension, Lacunarity and Succolarity) explore different as-
pects of the images in a complementary way. Two images
could present the same Fractal Dimension but different La-
cunarity; or the same Lacunarity but different Succolarity;
and any other combination of results.

The Fractal Dimension (FD) is a measure that character-
izes how much an object occupies the space that contains it.
FD is a measure that does not change with scale neither with
translation nor rotation. Through examples in Figs. 1 and 2
some of these aspects can be observed. Lacunarity measures
the size and frequency of gaps on the image. Succolarity
measures how much a given fluid can flow through an im-
age, considering as obstacles the set of pixels with a defined
color (e.g. white) on 2D images analysis.

2.1 Fractals with the same Fractal Dimension and
Lacunarity but different Succolarity

The Fractal Dimension, in some cases, is not enough to dif-
ferentiate texture of images. The Fractal Dimensions of the
two fractals in Fig. 3 are equal. Nevertheless, it is easily
shown by its definitions, that the Succolarity of those im-
ages are different. This is shown in Figs. 4 through 7.
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image rotated 90°CW

Fig. 2 Comparison of FD of a fractal with the same Fractal Dimen-
sion of Sierpinski’s carpet rotated ninety degrees clockwise. Fractal
Dimension does not change with rotation
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Fig. 3 Two different fractals with the same FD. Sierpinski carpet and
another fractal with the same rule of construction: 8 parts with a scale
factor of 1/3

Table 1 Numerical results of the In x In Succolarity plot for Fig. 7

In(d) In(100 x o)
b2t t2b 12r 121
4.9053 4.1236 4.1236 4.3655 4.3655
3.8067 4.1241 4.1241 4.3651 4.3651
3.2958 4.1236 4.1236 4.3655 4.3655
2.7081 4.1249 4.1249 4.3644 4.3644
2.1972 4.1340 4.1340 43572 43572
1.6094 4.1270 4.1270 4.3627 43627
1.0986 4.1648 4.1648 4.3319 43319

Figures 4 and 5 illustrate that the fractals in Fig. 3 have
almost the same values of Lacunarity.

The small differences can be better seen when analyzing
the slope of the line that has the best curve fit to the points
of bi logarithm plot of Lacunarity over the box sizes, while
in Fig. 4, this value is approximately —0.31, in Fig. 5, this
value is approximately —0.29 as the equations of the lines
shown.

In Figs. 6 and 7, the difference on the results of Succolar-
ity is easily shown by the In x In plots, since the Sierpinski
carpet (in Fig. 6) is a totally symmetric fractal, producing
equal results in the four directions of analysis of the Suc-
colarity. The fractal in Fig. 7 is only half symmetric, as it
can be seen in the bi logarithm plot in this figure and by the
results in Table 1.

Table 1 shows in the first column the logarithm of the
dividing factor of the boxes and on the second column the
logarithm of the Succolarity times 100. The sub-columns il-
lustrate respectively the results for the directions: bottom to
top (b2t); top to bottom (t2b); left to right (12r) and right to
left (r21). The results in this table made clear that the Succo-
larity for this image does not change by reversing the direc-
tion through the same axis.
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Fig. 4 In x In plot result of
Lacunarity of Sierpinski carpet

Fig. 5 In x In plot result of
Lacunarity of a fractal with the
same FD of the Sierpinski carpet

A

Fig. 6 Succolarity of Sierpinski
carpet

Fig. 7 Succolarity of a fractal
with the same FD of the
Sierpinski carpet

3 An approach to measure Succolarity

Succolarity measures the percolation degree of an image
(how much a given fluid can flow through this image). To
evaluate this, consider the image in Fig. 8(a). Suppose that
each pixel position can be considered as empty (black pix-
els) or with impenetrable mass (white pixels). Let us simu-
late the draining or percolation capacity of a fluid through
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the image. From the image to be analyzed, Fig. 8(a), we ob-
tain, depending on the directions to be considered, Fig. 8(b),
two or more images (Fig. 9). On the example in Fig. 8 four
images (Fig. 9) were obtained, the original image was an-
alyzed flooded vertically (top to bottom and bottom to top)
and horizontally (left to right and right to left). Other direc-
tions can be applied to generate different overflowing im-
ages, if representative, as well.
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Additionally to the fluid direction a pressure field is sup-
posed. The idea of pressure applied to a box is demonstrated
in Fig. 10. The pressure field grows from top to bottom on
the vertical case (directions: Top to bottom (t2b); and bot-
tom to top (b2t)) and from left to right on the horizontal case
(directions: Left to right (12r) and right to left (r21)). The ar-
rows in Fig. 10 represent these. Also, as the previous fractal
measures it presents scaling property. One can estimate the
Succolarity of the set by covering it with boxes of various
sizes.

There are two ways to divide the image of Fig. 8(a) in
equal sized boxes. With a dividing factor, d, of 3 obtain-
ing boxes of 3 x 3 pixels and by d = 9 obtaining boxes of
1 x 1 pixels (only considering integer divisions and without
considering the dividing factor of 1 of course). These two
examples are in Fig. 11.

3.1 Describing the method through a top to bottom
analysis of an image

The approach to calculate Succolarity can be explained by
the four next steps:

Step 1) Coming from the top of the original binary image,
all the black pixels are considered empty on the image (in
our case we consider black as the absence of elements in the
pixel position), it means that a fluid can pass and flood this
area. The existing material (white pixels on the example)
are considered as obstacles to the fluid. All the flood areas

(a) (b)

Fig. 8 (a) Original image (9 x 9): black pixels represent empty posi-
tion or gaps; (b) Example of four considered directions that a fluid can
try to flood the image

Fig. 9 Images obtained after
the first step of the Succolarity.
In white the flood from: (a) Top
to bottom (12b); (b) Bottom to
top (b2t); (c) Left to right (12r);
(d) Right to left (r21)
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from a boundary have their neighbors (4 neighbors for each
pixels: Top; Bottom; Left and Right) considered on the next
step and this process is recursively executed.

Step 2) The next step is then to divide these flood area of
each image (Fig. 11) in equal box sizes (BS(k), where k is
the number of possible divisions of an image in boxes) like
the box counting method. After that the occupation percent-
age (OP) is measured in each box size of each image, this is
denoted OP(BS(k)). The evaluation of the occupation per-
centage is demonstrated in the examples sketches in Fig. 12.

Step 3) For each box size, k, the expression in (1) is eval-
uated:

ZOP(BS(I()) x PR(BS(k), pc) (1)
k=1

Where OP(BS(k)) is obtained from step 2, n is the number
of possible divisions and PR(BS(k), pc) represent the pres-

=]
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Fig. 10 Indication of the increasing pressure over the boxes: (a) Ex-
ample of pressure over 3 x 3 boxes for Fig. 9(a); (b) Example of pres-
sure over 1 x 1 boxes for Fig. 9(c)
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(b)

Fig. 11 Dividing the intermediate images of Fig. 9 in boxes of two
different sizes: (a) Fig. 9(a) with d = 3, producing boxes of size 3 x 3
pixels; (b) Fig. 9(c) with d = 9, producing boxes of 1 x 1 pixels

(a) (b) (c) (d)
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Pressure OP = 6/9=0.67 Pressure OP = 6/9=0.67 Pressure OP = 1/9=0.11
15 1.5 45
(a) (c)
Pressure OP = 8/9=0.89 Pressure OP=0 Pressure OP = 1/9=0.11
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Fig. 12 Evaluation of the occupation percentage, OP(BS(k)), of some boxes when the Succolarity have as input the image in Fig. 10(a). The

pressures over the boxes are also shown

sure over the centroid of the box k on the scale on considera-
tion. This could be obtained by the x (in the horizontal case)
or y (vertical case) coordinates of the centroid. The pressure
varies with the box size because it is applied on the centroid
of the box. It also depends on the position of the box to cor-
rectly indicate the amount of pressure over it, as indicated in
Fig. 12.

The pressure (Figs. 10 and 12) is over the centroid of the
box. Then there is horizontal field of pressure, the x posi-
tion of the centroid is used while on the vertical case the y
position is considered.

Step 4) To make the Succolarity value dimensionless like
FD and Lacunarity we divide the value, obtained in (1), by
its larger possible value, that is now considering that the im-
age was totally flooded by the fluid (as if the input image
were totally black). The calculation is indicated in (2).

> k_1 OP(BS(k)) x PR(BS(k), pc)
> 7_, OP(BS(k)) x max PR(BS(k), pc)
2)

where dir represent the direction, for instance, left to right.

o (BS(k), dir) =

3.2 How to calculate the percentage of occupation as well
as the pressures over it

The image of Fig. 11(a) was used here, as input, to illustrate
the evaluation of the percentage of occupation, OP(BS(k)),
of some boxes and the pressure over them, PR(BS(k), pc).

In image of Fig. 12(a), six pixels are occupied over a total
of nine pixels to the hole box, then the occupation percent-
age, OP(BS(1)), considering this, the first box evaluated is
6/9 = 0.67. The pressures over the centroid of the boxes
are also shown on all the images, in this first image, the
pressure is of 1.5. The result of the image in Fig. 12(e) is
OP(BS(7)) = 0, because there are not pixels occupied, the
pressure over the box is 7.5 as could be seen on the image.

3.3 Example of the calculus of Succolarity

This section computes, using the steps of last section, Suc-
colarity for Fig. 11.

3.3.1 Box size equal to 1 pixel—direction left to right

In Fig. 11(b), each box corresponds to a pixel, the occupa-
tion percentage then could be only 0 (pixel without fluid)
or 100% (pixel with fluid). On this figure we can easily
note that 14 boxes have 100% of occupation and the oth-
ers 67 boxes have 0%. The x positions of the centroid are
the same for all of the boxes on the same column in the
case of the horizontal percolation (the same occurs with the
lines on the vertical percolation). The x value of the cen-
troid is then 0.5 for the boxes on the first column and 1.5
for the second (considering the pressure distribution like

@ Springer
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Table 2 Results of the Succolarity of Fig. 8(a)

Succolarity (o)

d BS b2t t2b 12r r2l
9 1x1) 0.3429 0.2387 0.0384 0.4829
3 (3x3) 0.3292 0.2634 0.0576 0.4691

Fig. 10(b)). Figure 11(b) presents 7 boxes on the first col-
umn and 7 more on the second. We have then using the nu-
merator of (1) obtained the results 7 x 0.5+ 7 x 1.5 = 14.
To compute the Succolarity we then divide this value by
the denominator of (2). This calculus results in 364.5(=
9x(0.54+154+25+35+45+554+654+7.54+8.5),as
the 9 columns suffer pressures between 0.5 to 8.5 and there
are 9 boxes on each column. The Succolarity value for the
box size 1 x 1isthen o (1 x 1;12r) =14/364.5 ~ 0.0384.

3.3.2 Box size equal to 9 pixels (3 x 3 )—direction top to
bottom

In Fig. 11(a) each box correspond to 3 x 3 pixels; to calcu-
late the percentage of presence of each box is necessary to
divide the number of filled pixels on the box by the area of
that box (9 in this case). Figure 11(a) shows 7 boxes with
some percentage of occupation and 2 with 0%. The upper
left box has 6 pixels, the percentage of that boxes is then
6/9 ~ 0.67. The percentages of occupied boxes of the top of
the image respectively from left to right are 0.67, 0.67 and
0.56 (&5/9), that is, a total of 1.90; on the middle boxes
this percentages are 0.11 (=1/9),0.56 and 0.89 (x8/9), a
total of 1.56; and on the bottom boxes there are 0, 0 and
0.11. Considering the pressure like in Fig. 10(a), the y po-
sition of the centroid is 1.5 on the three boxes of the top,
4.5 on the three middle boxes and 7.5 on the 3 boxes on
bottom of the image. The maximum value possible by a
9 x 9 image with 3 x 3 boxes completely flooded is (1.5 +
1.5+154+454+454+45+75+7.5+7.5)=40.5. This
value can be seen as the sum of the maximum “pressure”
applied to each box. The Succolarity value is then easily de-
termined by the simple application of (1). o(3 x 3,¢2b) =
(1.5 x 1.90) + (4.5 x 1.56) + (7.5 x 0.11) /40.5 =~ 0.2634.

All the results of the Succolarity of Fig. 8(a) are shown
in Table 2.

3.4 Example of the 3D approach

Figure 13 shows the 3D synthetic image used to illustrate
the approach of measuring the Succolarity of 3D images or
objects. In this image, the voxels are represented as cubes:
yellow cubes (including the transparent ones) represent the
obstacles to the fluid while the blue cubes already represent
the areas where the fluid percolates the image. Figure 14
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Fig. 13 3D Synthetic image used already with the representation of
the percolation of fluid (in blue)

shows the 2D slices that forms the 3D synthetic image in
Fig. 13. In these images (Fig. 14), the black squares repre-
sent the empty voxels corresponding to the paths that the
fluid can flow from the top to the bottom slice of the image.
The white squares represent the voxels in the image that cor-
responds to the obstacles to the fluid flow through the image.

The pressure field through the new axis (z) grows from
top to bottom, as represented in Fig. 13, then the pressure
over the first slice (Fig. 14(a), z = 5) is smaller than the pres-
sure on the second slice (Fig. 14(b), z =4) and so on to the
greater pressure that is applied on the last slice (Fig. 14(f),
z=0).

The dimension of the image represented by the slices in
Fig. 13is 6 x 6 x 6: 6 pixels wide; 6 pixels high and 6 pixels
depth. This image has then three possibilities of division:
factor of division 2, 3 or 6, having respectively boxes sizes
of: 3x3x3;2x2x2and 1 x 1 x 1 pixels.

For the box of size 1 x 1 x 1 we have pressure values
through the slices from 0.5 to 5.5. Considering “slice n” as
the slice where the value of z = n; the pressure is 5.5 on
slice 0. Then we have 2 boxes with pressure 0.5 (slice 5); 6
boxes with pressure 1.5 (slice 4); 4 boxes with pressure 2.5
(slice 3); 10 slices with pressure 3.5 (slice 2); 6 boxes with
pressure 4.5 (slice 1); and 9 boxes with pressure 5.5 (slice 0).
Considering (1) and that with boxes of 1 x 1 x 1 the boxes
are 0 or 100% occupied, the result of Succolarity for box
sizel x 1 x liso(l x 1 x1,12b)~ 131.5/648 ~ (0.2029.

For the box size 2 x 2 x 2 we have pressure through
slices from 1 (slice 4 and 5) to 5 (slice 0 and 1). On slices
4 and 5 we have 2 boxes partially occupied: one with oc-
cupation of 75% and the other with 25%. Slices 2 and 3
(with pressure 3 over them) have 5 boxes with some occu-
pation: 2 with 12.5%; 2 with 25% and 1 with 100% of oc-
cupation. Slices 0 and 1 have 4 boxes partially occupied: 1
with 12.5%; 1 with 25%; 1 with 50% and 1 with 100% of oc-
cupation. Considering (1) and the pressure and occupations
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Fig. 14 Representation through
slices of the 3D synthetic image
used as input for the 3D
approach of the Succolarity:
from the upper slice on (a) z =5
to the bottom slice on (f) z =0

(b)

Table 3 Numerical results of the Succolarity for the 3D synthetic im-
age represented by in Fig. 13

Succolarity (o)

d BS t2b
6 (Ix1x1) 0.2029
3 (2x2x2) 0.1929
2 (3x3x23) 0.2012

measured we have the result of Succolarity for this box size
of 0(2 x2x2,t2b) ~ 15.625/81 ~ 0.1929.

With the box size 3 x 3 x 3 we have pressure through
slices from 1.5 (slices 3, 4 and 5) and 4.5 (slice 0, 1 and 2).
On slices 3, 4 and 5 we have 4 boxes partially occupied:
2 with occupation of 3.7% and the two other with 18.5%.
Slices 0, 1 and 2 have also 4 boxes with some occupation: 1
with 14.8%; 1 with 22.2%; 1 with 25.9% and 1 with 29.6%
occupation. Considering (1) and the pressure and occupa-
tions measured, we have the Succolarity for this box size as
0(3 x 3 x3,12b) ~ 4.8285/24 ~ 0.2012.

The numerical results of Succolarity are shown in Ta-
ble 3.

4 Experiments on real images

To display that the Succolarity is, like the other fractal mea-
sures, a powerful method to characterize real images, we ap-
ply, in this section, the Succolarity method on satellite im-
ages of cities and on medical images too.

4.1 Application of Succolarity in the characterization of
social aspects of cities

Considering that cities are systems with fractal features be-
cause they are the result of a dynamic system with complex
logic, whose patterns cannot be measured by usual concepts
and tools from classical geometry [15-17, 21, 22]. We use
here these types of images as input to Succolarity evalua-
tion. The idea is to demonstrate the results of Succolarity
as a complementary measure to Lacunarity, as well as La-
cunarity was demonstrated to be complementary to Fractal
Dimension measures in lots of cases [11, 12].

The particular problem of characterizing social aspects
of cities and differentiate informal and formal areas fit very
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well to the concepts of Succolarity. Normally a great differ-
ence between formal and informal areas lies on the width of
the streets, bigger on the formal area. Also, quite often the
alleys that exist on informal areas do not communicate with
neighboring streets. This could be better explained if one
could imagine that is not as easy for a car to drive through
all the parts of an informal area like it is in a formal area.

To better illustrate the results, the images used here were
images already used and discussed on previous works [11,
12]. These papers use Lacunarity to distinguish the spatial
configuration of slums from formal areas as well as from
other regions to contribute for the development of alternative
and complementary classifications of settlements. The goal
is to generate complementary mapping and classifications
for city planning through satellite images.

The images used here (including the binary version of
each image) were gently sent by the authors of the paper
[11] (Figs. 15 and 16). The image in Fig. 16(c) is the inverted
version of the image sent by them to ensure that the results
present proper behavior. These satellite images were orig-
inally captured by the IKONOS [18] and its images could
be freely downloaded through the internet for non-profit re-
search and evaluation purposes.

Four images were used for this analysis (Fig. 15), three
from the city of Campinas, SP, Brazil: two regular (orthogo-
nal geometry) samples and on irregular (slum) sample, and
one image, with an irregular sample, from the city of Rio de
Janeiro, Brazil. All images here have 270x270 pixels.

The images in Fig. 16 were thresholded in such a way that
the constructions (obstacles that do not permit percolation)
in Fig. 15 are mainly represented in white while the streets
(areas that permits percolation) are mainly represented in
black. For that, we inverted (each pixel black became white
and vice-versa) one of the images (correspondent to the bi-
nary image of Fig. 15(c)) reaching in Fig. 16(c), because in
all other images the black pixels represent the streets and the
white ones represent the constructions, like we expect.

Figure 17 shows a plot with the mean result of the Suc-
colarity (this is a simple average of the four directions of
Succolarity analysis: left to right, right to left, top to bottom
and bottom to top) for the three images from Campinas.

Figure 18 illustrates the gain of using the Succolarity over
the Lacunarity for this example. The informal areas, as can
be seen through the results, produce well separated graphs,
demonstrating that Succolarity is a good measure to charac-
terize this kind of pattern.

@ Springer
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Fig. 15 Satellite images from IKONOS: (a) and (b) two regular samples of occupation from Campinas: (a) formal 1 and (b) formal 2; (c)

informal 1: slum of Campinas; (d) informal 2: slum from Rio de Janeiro

Fig. 16 Binary version of images in Fig. 15
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Fig. 17 Results of Succolarity medium obtained from the proposed
method using as input the images of Campinas in Fig. 16(a) formal 1,
(b) formal 2 and (¢) informal 1

Another important point here, is that, this results are the
arithmetic mean results of Succolarity in a way that, for spe-
cific application, as we will see on the next section, only
one or a particular number of directions could be mea-
sured, as it are considered interesting for the problem to be
solved.

On plots of Figs. 19 to 22 one could see that, through
other type of analysis, the results of Succolarity could be
used to distinguish formal areas through informal ones.
These results consider four directions that a fluid can flood
the original images: bottom to top (b2t); top to bottom (t2b);
left to right (12r); right to left (r21). Figures 19 and 20 demon-

@ Springer

o
&

<o
o

o
w

o
N

o
i

Average of Succolarity

o

10 100

Factor of division

1000

-

—a— informal 1 —x— informal 2 ‘

Fig. 18 Results of Succolarity medium obtained from the proposed
method using as input the images of Campinas in Fig. 16(c) informal 1
and 16 (d) informal 2

strate that, on formal areas, the results do not vary consid-
erably with the direction. This is easily explained when we
think that formal areas usually have a great number of large
streets that go from lots of points to others including points
where some streets cross others.

Figures 21 and 22, which are results of Succolarity of in-
formal areas, demonstrate that, in this kind of occupation,
the direction used on the evaluation makes great impact on
the results. While, for the analyzed formal areas, the min-
imum values of Succolarity evaluated are on decimals for
the informal areas, the minimum values are in hundredths,
which is better seen next; in Tables 4, 5, 6 and 7 (the val-
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Fig. 21 Results of Succolarity of the image in Fig. 16(c)—informal 1

ues on tables were multiplied by ten to make the values
more readable). Another consideration is that the maximum
difference between the measures that on formal areas are
around hundredths, in informal areas this difference grows
considerably to decimals.

4.2 Application of Succolarity to medical images
An application of the Succolarity to vascular diagnosis is

shown in this section. The two examples of images [14]
demonstrate a carotid with and without occlusion. On first
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Fig. 22 Results of Succolarity of the image in Fig. 16(d)—informal 2

Table 4 Numerical results of Succolarity of formal 1: Figs. 17 and 19

Succolarity (x10)

Dividing factor b2t t2b 12r 2l Medium
270 3.489 3.023 3.33 3415 3.314
135 3.489 3.023 3.33 3.415 3.314
90 3.489 3.023 3.33 3415 3314
54 3.489 3.023 3.33 3415 3314
45 3.489 3.023 333 3.415 3314
30 3.489 3.024 333 3.415 3.315
27 3.488 3.023 333 3.415 3314
18 3.489 3.026 333 3413 3314
15 3.487 3.024 333 3413 3314
10 3.486 3.028 3.331 3.407 3.313
9 3.489 3.033 3.339 3414 3.319
6 3.482 3.035 3.339 3412 3.317
5 3.473 3.035 3.313 3.38 33
3 3.487 3.075 3.357 3.384 3.326
2 343 3.085 34 3.354 3.317

image named H53022B, Fig. 23, there is an internal carotid
artery plaque, on the second H53031B, Fig. 24, there is an
internal carotid artery occlusion. Parts of the original image
that contains only textual information were removed from
the two images. The result images are both 480 x 240 pix-
els.

In Figs. 23(a) and 23(b) it is not easy to visualize the
occlusion that occurs in Fig. 24(b) and does not occur in
Fig. 24(a). These images were submitted to heuristic tests
to determine good values of threshold. The results of the
threshold of these images are shown in Figs. 24(a) and 24(b).

After the threshold, it is easier to note that Fig. 24(b) has
a complete occlusion and Fig. 24(a) has a partial obstruc-
tion. The next two images, Figs. 25(a) and 25(b), show the
intermediate images generated during the executing of the
method proposed to calculate the Succolarity of the input
image in Fig. 24(a).
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Table 5 Numerical results of Succolarity of formal 2: Figs. 17 and 20

Succolarity (x 10)

Dividing factor b2t t2b 12r 2l Medium
270 3.432 3.364 2.752 3.152 3.175
135 3.432 3.364 2.752 3.152 3.175
90 3.432 3.364 2.752 3.152 3.175
54 3.432 3.364 2.752 3.152 3.175
45 3.432 3.364 2.751 3.152 3.175
30 3.431 3.364 2.753 3.152 3.175
27 3.432 3.364 2.752 3.151 3.175
18 3.431 3.364 2.753 3.151 3.175
15 3.428 3.362 2.754 3.152 3.174
10 3.424 3.361 2.754 3.147 3.172
9 3.415 3.354 2.756 3.148 3.168
6 3.41 3.355 2.758 3.145 3.167
5 3.408 3.358 2.755 3.139 3.165
3 3.326 3.294 2.783 3.121 3.131
2 3.295 3.286 2.847 3.113 3.135

Table 6 Numerical results of Succolarity of informal 1: Figs. 17, 18
and 21

Succolarity (x10)
Dividing factor b2t t2b 12r 2l Medium
270 2.87 0.543 0.317 3.113 1.711
135 2.87 0.543 0.317 3.113 1.711
90 2.87 0.543 0.317 3.113 1.711
54 2.87 0.543 0.318 3.113 1.711
45 2.87 0.543 0.317 3.113 1.711
30 2.869 0.543 0.318 3.113 1.711
27 2.869 0.544 0.319 3.112 1.711
18 2.868 0.546 0.321 3.111 1.711
15 2.866 0.547 0.322 3.112 1.712
10 2.861 0.553 0.327 3.113 1.711
9 2.862 0.556 0.333 3.104 1.714
6 2.845 0.568 0.35 3.086 1.712
5 2.828 0.574 0.358 3.107 1.717
3 2.765 0.645 0.424 3.03 1.716
2 2.595 0.823 0.637 2.867 1.73

The two following images, Figs. 26(a) and 26(b), show
the intermediate images generated during the executing of
the method proposed to calculate the Succolarity for the in-
put image in Fig. 24(b).

The In x In plots of the Succolarity are shown in Figs. 27
and 28.

Table 8 shows the Succolarity numerical values for the
image H53022B, Fig. 23(a). Table 9 shows the Succolarity
numerical values for the image H53031B, Fig. 23(b).
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Table 7 Numerical results of Succolarity of informal 2: Figs. 18 and

22
Succolarity (x 10)
Dividing factor b2t t2b 12r 2l Medium
270 1.768 0.189 0.332 0.469 0.69
135 1.768 0.189 0.332 0.469 0.69
90 1.768 0.189 0.332 0.469 0.69
54 1.768 0.19 0.332 0.469 0.69
45 1.768 0.19 0.333 0.468 0.69
30 1.767 0.19 0.333 0.468 0.69
27 1.767 0.191 0.333 0.468 0.69
18 1.765 0.19 0.334 0.467 0.689
15 1.764 0.193 0.336 0.466 0.69
10 1.757 0.195 0.336 0.463 0.688
9 1.757 0.199 0.334 0.461 0.688
6 1.742 0.207 0.349 0.453 0.688
5 1.723 0.217 0.358 0.448 0.686
3 1.6 0.234 0.373 0.414 0.655
2 1.44 0.287 0.47 0.373 0.642

Table 8 Numerical values of Succolarity of the threshold H53022B,
Fig. 23(a). d is the factor of division, BS, the box size (width x height)

Succolarity (o) In(100 x o)
d In(d) BS 12r r21 12r 2l
8 20794 (30x17) 0.4014 04169 3.6924  3.7303
4 13863 (60 x 34) 0.3993  0.4138 3.6871  3.7228
2 0.6931 (120x68) 0.3913  0.4036 3.6669  3.6978

Table 9 Numerical values of Succolarity of the threshold H53031B,
Fig. 23(b). d is the factor of division, BS, the box size (width x height)

Succolarity (o) In(100 x o)
d In(d) BS 12r 21 12r r2l
4 13863 (61 x34) 0.1631  0.4306 27918  3.7626
2 0.6931 (122 x68) 0.188 0.4181 2.9339  3.7331

The direction considered on the results was only horizon-
tal because the vessels on the images are on this direction.
In the non occluded image the results on the curve to 12r and
r2l almost match as we can see by Fig. 27. However, when
an obstacle is present on the analyzed image, the 12r and 121
curves differs significantly as could be seen in Fig. 28.

5 Conclusion
In this work, an approach to evaluate the fractal measure

of Succolarity was presented. An equation to evaluate this
measure was proposed based on the notions of directional
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Fig. 23 Carotid images from
the vascular-web database [14]:
(a) H53022B—Internal carotid
artery plaque; and (b)
H53031B—Internal carotid
artery occlusion

Fig. 24 Thresholded images of
images in Fig. 23: (a) Value of
threshold heuristically chosen
was 18; and (b) Value of
threshold heuristically chosen
was 15

Fig. 25 Intermediate images
from the processing of image in
Fig. 24(a): (a) for the direction
left to right (12r); and (b) for the
direction right to left (121)

Fig. 26 Intermediate images
from the processing of image in
Fig. 24(b) (a) for the direction
left to right (12r); and (b) for the
direction right to left (r21)

pressure due to percolation of a fluid in a partially penetrable
environment.

How to compute the Succolarity from binary 2D and 3D
digital images were discussed through examples.

Like the Lacunarity, our proposal to Succolarity compu-
tation considers the use of bi logarithm (In x In) or linear
x log plots instead of a single value. The Succolarity val-
ues over different box sizes could give essential information
useful to the pattern recognition process.

The results of the experiments on real images show that
the method is very useful as a new feature to integrate other
characteristics on pattern recognition processes. The notions
of Succolarity [1] were respected and the measure could be

(b)

seen as a natural evolution of the FD and Lacunarity. The
other advantage of the method is to be simple, easy and fast
to be calculated.

The analysis of satellite images of cities over its social as-
pects using the Lacunarity is better than using FD [11, 12].
The method proposed here describes another approach that
could differentiate not only between formal and informal ar-
eas like does the Lacunarity in [11, 12], but between differ-
ent kinds of informal areas too.

The analysis of the vascular medical images indicates
that the Succolarity is useful on determining vascular ob-
structions in ultrasound exams and strength the argument
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Fig. 27 1n x In plot of the Succolarity for Fig. 24(a)
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Fig. 28 In x In plot of the Succolarity for Fig. 24(b)

that directional information on images could be very well
extracted by this method.

The main gain of using the Succolarity is that the method
enables not one, but lots of ways to analyze the results, as
could be seen by the two kinds of applications in this work,
once the user knows something about what kind of informa-
tion he wants to extract from the image, more he can take
advantage of the representation of the result. The user could
use different directions, combining it or not, depending on
the problem in question. These were illustrated by the cities
results of Succolarity, which uses four directions, and the
vascular medical images results, that use only two direc-
tions. Succolarity is a great measure, which is very useful,
not only for the type of images used here, but to generic
images, that present some information associated with di-
rection or flow. Among the applications are the study of per-
colation of petroleum and natural gas through semi-porous
rock; where the theory can help to predict and improve the
productivity of natural gas and oil.
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